摘要
In this paper, our focus is to introduce and investigate a class of mappings called M-asymmetric irresolute multifunctions defined between bitopological structural sets satisfying certain minimal properties. M-asymmetric irresolute multifunctions are point-to-set mappings defined using M-asymmetric semiopen and semiclosed sets. Some relations between M-asymmetric semicontinuous multifunctions and M-asymmetric irresolute multifunctions are established. This notion of M-asymmetric irresolute multifunctions is analog to that of irresolute multifunctions in the general topological space and, upper and lower M-asymmetric irresolute multifunctions in minimal bitopological spaces, but mathematically behaves differently.
In this paper, our focus is to introduce and investigate a class of mappings called M-asymmetric irresolute multifunctions defined between bitopological structural sets satisfying certain minimal properties. M-asymmetric irresolute multifunctions are point-to-set mappings defined using M-asymmetric semiopen and semiclosed sets. Some relations between M-asymmetric semicontinuous multifunctions and M-asymmetric irresolute multifunctions are established. This notion of M-asymmetric irresolute multifunctions is analog to that of irresolute multifunctions in the general topological space and, upper and lower M-asymmetric irresolute multifunctions in minimal bitopological spaces, but mathematically behaves differently.
作者
Levy K. Matindih
Peter J. Banda
Danny Mukonda
Levy K. Matindih;Peter J. Banda;Danny Mukonda(Department of Mathematics and Statistics, Mulungushi University, Kabwe, Zambia;Department of Mathematics and Statistics, Rusangu University, Monze, Zambia)