期刊文献+

VATdt: Visual Assessment of Cluster Tendency Using Diagonal Tracing

VATdt: Visual Assessment of Cluster Tendency Using Diagonal Tracing
下载PDF
导出
摘要 The visual assessment of tendency (VAT) technique, for visually finding the number of meaningful clusters in data, developed by J. C. Bezdek, R. J. Hathaway and J. M. Huband, is very useful, but there is room for improvements. Instead of displaying the ordered dissimilarity matrix (ODM) as a 2D gray-level image for human interpretation as is done by VAT, we trace the changes in dissimilarities along the diagonal of the ODM. This changes the 2D data structure (matrices) into 1D arrays, displayed as what we call the tendency curves, which enables one to concentrate only on one variable, namely the height. One of these curves, called the d-curve, clearly shows the existence of cluster structure as patterns in peaks and valleys, which can be caught not only by human eyes but also by the computer. Our numerical experiments showed that the computer can catch cluster structures from the d-curve even in some cases where the human eyes see no structure from the visual outputs of VAT. And success on all numerical experiments was obtained us- ing the same (fixed) set of program parameter values. The visual assessment of tendency (VAT) technique, for visually finding the number of meaningful clusters in data, developed by J. C. Bezdek, R. J. Hathaway and J. M. Huband, is very useful, but there is room for improvements. Instead of displaying the ordered dissimilarity matrix (ODM) as a 2D gray-level image for human interpretation as is done by VAT, we trace the changes in dissimilarities along the diagonal of the ODM. This changes the 2D data structure (matrices) into 1D arrays, displayed as what we call the tendency curves, which enables one to concentrate only on one variable, namely the height. One of these curves, called the d-curve, clearly shows the existence of cluster structure as patterns in peaks and valleys, which can be caught not only by human eyes but also by the computer. Our numerical experiments showed that the computer can catch cluster structures from the d-curve even in some cases where the human eyes see no structure from the visual outputs of VAT. And success on all numerical experiments was obtained us- ing the same (fixed) set of program parameter values.
作者 Yingkang Hu
出处 《American Journal of Computational Mathematics》 2012年第1期27-41,共15页 美国计算数学期刊(英文)
关键词 CLUSTERING DISSIMILARITY Measures Data Visualization CLUSTERING TENDENCY Clustering Dissimilarity Measures Data Visualization Clustering Tendency
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部