摘要
An L-stable block method based on hybrid second derivative algorithm (BHSDA) is provided by a continuous second derivative method that is defined for all values of the independent variable and applied to parabolic partial differential equations (PDEs). The use of the BHSDA to solve PDEs is facilitated by the method of lines which involves making an approximation to the space derivatives, and hence reducing the problem to that of solving a time-dependent system of first order initial value ordinary differential equations. The stability properties of the method is examined and some numerical results presented.
An L-stable block method based on hybrid second derivative algorithm (BHSDA) is provided by a continuous second derivative method that is defined for all values of the independent variable and applied to parabolic partial differential equations (PDEs). The use of the BHSDA to solve PDEs is facilitated by the method of lines which involves making an approximation to the space derivatives, and hence reducing the problem to that of solving a time-dependent system of first order initial value ordinary differential equations. The stability properties of the method is examined and some numerical results presented.