期刊文献+

Deterministic Chaos of <i>N</i>Stochastic Waves in Two Dimensions

Deterministic Chaos of <i>N</i>Stochastic Waves in Two Dimensions
下载PDF
导出
摘要 Kinematic exponential Fourier (KEF) structures, dynamic exponential (DEF) Fourier structures, and KEF-DEF structures with time-dependent structural coefficients are developed to examine kinematic and dynamic problems for a deterministic chaos of N stochastic waves in the two-dimensional theory of the Newtonian flows with harmonic velocity. The Dirichlet problems are formulated for kinematic and dynamics systems of the vorticity, continuity, Helmholtz, Lamb-Helmholtz, and Bernoulli equations in the upper and lower domains for stochastic waves vanishing at infinity. Development of the novel method of solving partial differential equations through decomposition in invariant structures is resumed by using experimental and theoretical computation in Maple?. This computational method generalizes the analytical methods of separation of variables and undetermined coefficients. Exact solutions for the deterministic chaos of upper and lower cumulative flows are revealed by experimental computing, proved by theoretical computing, and justified by the system of Navier-Stokes PDEs. Various scenarios of a developed wave chaos are modeled by 3N parameters and 2N boundary functions, which exhibit stochastic behavior. Kinematic exponential Fourier (KEF) structures, dynamic exponential (DEF) Fourier structures, and KEF-DEF structures with time-dependent structural coefficients are developed to examine kinematic and dynamic problems for a deterministic chaos of N stochastic waves in the two-dimensional theory of the Newtonian flows with harmonic velocity. The Dirichlet problems are formulated for kinematic and dynamics systems of the vorticity, continuity, Helmholtz, Lamb-Helmholtz, and Bernoulli equations in the upper and lower domains for stochastic waves vanishing at infinity. Development of the novel method of solving partial differential equations through decomposition in invariant structures is resumed by using experimental and theoretical computation in Maple?. This computational method generalizes the analytical methods of separation of variables and undetermined coefficients. Exact solutions for the deterministic chaos of upper and lower cumulative flows are revealed by experimental computing, proved by theoretical computing, and justified by the system of Navier-Stokes PDEs. Various scenarios of a developed wave chaos are modeled by 3N parameters and 2N boundary functions, which exhibit stochastic behavior.
出处 《American Journal of Computational Mathematics》 2014年第4期289-303,共15页 美国计算数学期刊(英文)
关键词 Stochastic WAVES INVARIANT Structures Experimental COMPUTATION THEORETICAL COMPUTATION Stochastic Waves Invariant Structures Experimental Computation Theoretical Computation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部