期刊文献+

Computer Simulation of Transition Regimes of Solitons in Stimulated Raman Scattering with Excitation of Polar Optical Phonons 被引量:1

Computer Simulation of Transition Regimes of Solitons in Stimulated Raman Scattering with Excitation of Polar Optical Phonons
下载PDF
导出
摘要 The system of nonlinear equations modeling the process of nonstationary stimulated Raman scattering (SRS) in noncentrosymmetric crystals for the waves on laser, Stokes, polariton, and phonon frequencies is investigated by using the numerical methods. The general case for amplitudes of waves that resulted in doubling of the number of equations is considered. It is shown that the application of the methods of finite differences to the computer simulation of transition regimes is completely consistent with the analytical results found for the asymptotical solutions in form of solitons. The obtained results also indicate that the laser pulses of Gaussian shape appearing at the boundary of nonlinear medium tend to become solitons of Lorentzian shape. It was also found that the formation of solitons occurs when the vibrations of optical phonons and that of electromagnetic wave were either in or out of phase. It is shown that all electromagnetic waves entering the medium with different speeds become solitons having the same speed. In the second part of the paper we considered the computer simulation of soliton stability with respect to small (weak) perturbations of all interacting waves. In the present paper we considered the case of evolution of those disturbances in the vicinity of peaks of solitons. The numerical analysis showed that in wide range of parameters the solitons were stable. The system of nonlinear equations modeling the process of nonstationary stimulated Raman scattering (SRS) in noncentrosymmetric crystals for the waves on laser, Stokes, polariton, and phonon frequencies is investigated by using the numerical methods. The general case for amplitudes of waves that resulted in doubling of the number of equations is considered. It is shown that the application of the methods of finite differences to the computer simulation of transition regimes is completely consistent with the analytical results found for the asymptotical solutions in form of solitons. The obtained results also indicate that the laser pulses of Gaussian shape appearing at the boundary of nonlinear medium tend to become solitons of Lorentzian shape. It was also found that the formation of solitons occurs when the vibrations of optical phonons and that of electromagnetic wave were either in or out of phase. It is shown that all electromagnetic waves entering the medium with different speeds become solitons having the same speed. In the second part of the paper we considered the computer simulation of soliton stability with respect to small (weak) perturbations of all interacting waves. In the present paper we considered the case of evolution of those disturbances in the vicinity of peaks of solitons. The numerical analysis showed that in wide range of parameters the solitons were stable.
出处 《American Journal of Computational Mathematics》 2015年第3期336-344,共9页 美国计算数学期刊(英文)
关键词 Finite DIFFERENCES Method Abbreviated Maxwell’s EQUATIONS Stimulated RAMAN Scattering Stability Finite Differences Method Abbreviated Maxwell’s Equations Stimulated Raman Scattering Stability
  • 相关文献

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部