摘要
The study suggests asymptotic behavior of the solution to a new class of difference equations: . where a, bi, α and β are positive real numbers for i = 0, 1, · · · , k , and the initial conditions ψ-j, ψ-j+1, · · ·, ψ0 are randomly positive real numbers where j = 2k + 1. Accordingly, we consider the stability, boundedness and periodicity of the solutions of this recursive sequence. Indeed, we give some interesting counter examples in order to verify our strong results.
The study suggests asymptotic behavior of the solution to a new class of difference equations: . where a, bi, α and β are positive real numbers for i = 0, 1, · · · , k , and the initial conditions ψ-j, ψ-j+1, · · ·, ψ0 are randomly positive real numbers where j = 2k + 1. Accordingly, we consider the stability, boundedness and periodicity of the solutions of this recursive sequence. Indeed, we give some interesting counter examples in order to verify our strong results.