期刊文献+

Completeness Problem of the Deep Neural Networks

Completeness Problem of the Deep Neural Networks
下载PDF
导出
摘要 Hornik, Stinchcombe & White have shown that the multilayer feed forward networks with enough hidden layers are universal approximators. Roux & Bengio have proved that adding hidden units yield a strictly improved modeling power, and Restricted Boltzmann Machines (RBM) are universal approximators of discrete distributions. In this paper, we provide yet another proof. The advantage of this new proof is that it will lead to several new learning algorithms. We prove that the Deep Neural Networks implement an expansion and the expansion is complete. First, we briefly review the basic Boltzmann Machine and that the invariant distributions of the Boltzmann Machine generate Markov chains. We then review the θ-transformation and its completeness, i.e. any function can be expanded by θ-transformation. We further review ABM (Attrasoft Boltzmann Machine). The invariant distribution of the ABM is a θ-transformation;therefore, an ABM can simulate any distribution. We discuss how to convert an ABM into a Deep Neural Network. Finally, by establishing the equivalence between an ABM and the Deep Neural Network, we prove that the Deep Neural Network is complete. Hornik, Stinchcombe & White have shown that the multilayer feed forward networks with enough hidden layers are universal approximators. Roux & Bengio have proved that adding hidden units yield a strictly improved modeling power, and Restricted Boltzmann Machines (RBM) are universal approximators of discrete distributions. In this paper, we provide yet another proof. The advantage of this new proof is that it will lead to several new learning algorithms. We prove that the Deep Neural Networks implement an expansion and the expansion is complete. First, we briefly review the basic Boltzmann Machine and that the invariant distributions of the Boltzmann Machine generate Markov chains. We then review the θ-transformation and its completeness, i.e. any function can be expanded by θ-transformation. We further review ABM (Attrasoft Boltzmann Machine). The invariant distribution of the ABM is a θ-transformation;therefore, an ABM can simulate any distribution. We discuss how to convert an ABM into a Deep Neural Network. Finally, by establishing the equivalence between an ABM and the Deep Neural Network, we prove that the Deep Neural Network is complete.
出处 《American Journal of Computational Mathematics》 2018年第2期184-196,共13页 美国计算数学期刊(英文)
关键词 AI Universal APPROXIMATORS BOLTZMANN Machine MARKOV CHAIN INVARIANT Distribution COMPLETENESS Deep Neural Network AI Universal Approximators Boltzmann Machine Markov Chain Invariant Distribution Completeness Deep Neural Network
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部