期刊文献+

Hydrodynamic Mixed Convection in a Lid-Driven Hexagonal Cavity with Corner Heater 被引量:1

Hydrodynamic Mixed Convection in a Lid-Driven Hexagonal Cavity with Corner Heater
下载PDF
导出
摘要 Hydrodynamic mixed convection in a lid-driven hexagonal cavity with corner heater is numerically simulated in this paper by employing finite element method. The working fluid is assigned as air with a Prandtl num-ber of 0.71 throughout the simulation. The left and right walls of the hex-agonal cavity are kept thermally insulated and the lid moves top to bottom at a constant speed U0. The top left and right walls of the enclosure are maintained at cold temperature Tc. The bottom right wall is considered with a corner heater whereas the bottom remaining part is adiabatic and inside the cavity a square shape heated block Th. The focus of the work is to investigate the effect of Hartmann number, Richardson number, Grashof number and Reynolds number on the fluid flow and heat transfer characteristics inside the enclosure. A set of graphical results is presented in terms of streamlines, isotherms, local Nusselt number, velocity profiles, temperature profiles and average Nusselt numbers. The results reveal that heat transfer rate increases with increasing Richardson number and Hartmann number. It is also observed that, Hartmann number is a good control parameter for heat transfer in fluid flow in hexagonal cavity. Hydrodynamic mixed convection in a lid-driven hexagonal cavity with corner heater is numerically simulated in this paper by employing finite element method. The working fluid is assigned as air with a Prandtl num-ber of 0.71 throughout the simulation. The left and right walls of the hex-agonal cavity are kept thermally insulated and the lid moves top to bottom at a constant speed U0. The top left and right walls of the enclosure are maintained at cold temperature Tc. The bottom right wall is considered with a corner heater whereas the bottom remaining part is adiabatic and inside the cavity a square shape heated block Th. The focus of the work is to investigate the effect of Hartmann number, Richardson number, Grashof number and Reynolds number on the fluid flow and heat transfer characteristics inside the enclosure. A set of graphical results is presented in terms of streamlines, isotherms, local Nusselt number, velocity profiles, temperature profiles and average Nusselt numbers. The results reveal that heat transfer rate increases with increasing Richardson number and Hartmann number. It is also observed that, Hartmann number is a good control parameter for heat transfer in fluid flow in hexagonal cavity.
出处 《American Journal of Computational Mathematics》 2018年第3期245-258,共14页 美国计算数学期刊(英文)
关键词 Mixed Convection Lid-Driven HEXAGONAL CAVITY Finite Element Method Square Block CORNER HEATER Mixed Convection Lid-Driven Hexagonal Cavity Finite Element Method Square Block Corner Heater
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部