期刊文献+

Fourth-Order Adjoint Sensitivity Analysis of an OECD/NEA Reactor Physics Benchmark: II. Mathematical Expressions and CPU-Time Comparisons for Computing 4<sup>th</sup>-Order Sensitivities 被引量:1

Fourth-Order Adjoint Sensitivity Analysis of an OECD/NEA Reactor Physics Benchmark: II. Mathematical Expressions and CPU-Time Comparisons for Computing 4<sup>th</sup>-Order Sensitivities
下载PDF
导出
摘要 This work extends to fourth-order previously published work on developing the adjoint sensitivity and uncertainty analysis of the numerical model of a <u>p</u>oly<u>e</u>thylene-<u>r</u>eflected <u>p</u>lutonium (acronym: PERP) OECD/NEA reactor physics benchmark. Previous works showed that the third-order sensitivities of the PERP leakage response with respect to these total microscopic cross sections are far larger than the corresponding 1<sup>st</sup>-order and 2<sup>nd</sup>-order ones, thereby having the largest impact on the uncertainties induced in the PERP benchmark’s response. This finding has motivated the development of the original 4<sup>th</sup>-order formulas presented in this work, which are valid not only for the PERP benchmark but can also be used for computing the 4<sup>th</sup>-order sensitivities of response of any nuclear system involving fissionable material and internal or external neutron sources. Subsequent works will use the adjoint-based mathematical expressions obtained in this work to compute exactly and efficiently the numerical values of the largest fourth-order sensitivities of the PERP benchmark’s response to the total microscopic cross sections, and use them for a pioneering fourth-order uncertainty analysis of the PERP benchmark’s response. This work extends to fourth-order previously published work on developing the adjoint sensitivity and uncertainty analysis of the numerical model of a <u>p</u>oly<u>e</u>thylene-<u>r</u>eflected <u>p</u>lutonium (acronym: PERP) OECD/NEA reactor physics benchmark. Previous works showed that the third-order sensitivities of the PERP leakage response with respect to these total microscopic cross sections are far larger than the corresponding 1<sup>st</sup>-order and 2<sup>nd</sup>-order ones, thereby having the largest impact on the uncertainties induced in the PERP benchmark’s response. This finding has motivated the development of the original 4<sup>th</sup>-order formulas presented in this work, which are valid not only for the PERP benchmark but can also be used for computing the 4<sup>th</sup>-order sensitivities of response of any nuclear system involving fissionable material and internal or external neutron sources. Subsequent works will use the adjoint-based mathematical expressions obtained in this work to compute exactly and efficiently the numerical values of the largest fourth-order sensitivities of the PERP benchmark’s response to the total microscopic cross sections, and use them for a pioneering fourth-order uncertainty analysis of the PERP benchmark’s response.
作者 Dan Gabriel Cacuci Ruixian Fang Dan Gabriel Cacuci;Ruixian Fang(Center for Nuclear Science and Energy, Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA)
出处 《American Journal of Computational Mathematics》 2021年第2期133-156,共24页 美国计算数学期刊(英文)
关键词 Polyethylene-Reflected Plutonium Sphere 4<sup>th</sup>-Order Adjoint Sensitivity Analysis Microscopic Total Cross Sections Polyethylene-Reflected Plutonium Sphere 4<sup>th</sup>-Order Adjoint Sensitivity Analysis Microscopic Total Cross Sections
  • 相关文献

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部