摘要
This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed point theory is a beautiful mixture of Mathematical analysis to explain some conditions in which maps give excellent solutions. Here later many mathematicians used this fixed point theory to establish their results, see for instance, Picard-Lindel of Theorem, The Picard theorem, Implicit function theorem etc. Also, we developed ideas that many of known fixed point theorems can easily be derived from the Banach theorem. It extends some recent works on the extension of Banach contraction principle to metric space with norm spaces.
This paper aims at treating a study of Banach fixed point theorem for mapping results that introduced in the setting of normed space. The classical Banach fixed point theorem is a generalization of this work. A fixed point theory is a beautiful mixture of Mathematical analysis to explain some conditions in which maps give excellent solutions. Here later many mathematicians used this fixed point theory to establish their results, see for instance, Picard-Lindel of Theorem, The Picard theorem, Implicit function theorem etc. Also, we developed ideas that many of known fixed point theorems can easily be derived from the Banach theorem. It extends some recent works on the extension of Banach contraction principle to metric space with norm spaces.
作者
Md. Abdul Mannan
Md. R. Rahman
Halima Akter
Nazmun Nahar
Samiran Mondal
Md. Abdul Mannan;Md. R. Rahman;Halima Akter;Nazmun Nahar;Samiran Mondal(Department of Mathematics, Uttara University, Dhaka, Bangladesh;Department of Computer Science & Engineering, Prime University, Dhaka, Bangladesh;Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh)