期刊文献+

Collatz Sequences and Characteristic Zero-One Strings: Progress on the 3<i>x</i>+ 1 Problem 被引量:1

Collatz Sequences and Characteristic Zero-One Strings: Progress on the 3<i>x</i>+ 1 Problem
下载PDF
导出
摘要 <span style="font-family:Verdana;">The unsolved number theory problem known as the 3</span><i><i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"></span></i><span style="font-family:Verdana;"> + 1 problem involves sequences of positive integers generated more or less at random that seem to always converge to 1. Here the connection between the first integer (</span><i><i><span style="font-family:Verdana;">n</span></i><span style="font-family:Verdana;"></span></i><span style="font-family:Verdana;">) and the last (</span><i><i><span style="font-family:Verdana;">m</span></i><span style="font-family:Verdana;"></span></i><span style="font-family:Verdana;">) of a 3</span><i><i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"></span></i><span style="font-family:Verdana;"> + 1 sequence is analyzed by means of characteristic zero-one strings. This method is used to achieve some progress on the 3</span><i><i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"></span></i><span style="font-family:Verdana;"> + 1 problem. In particular, the</span> long<span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">standing conjecture that nontrivial cycles do not exist is virtually proved using probability theory.</span></span> <span style="font-family:Verdana;">The unsolved number theory problem known as the 3</span><i><i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"></span></i><span style="font-family:Verdana;"> + 1 problem involves sequences of positive integers generated more or less at random that seem to always converge to 1. Here the connection between the first integer (</span><i><i><span style="font-family:Verdana;">n</span></i><span style="font-family:Verdana;"></span></i><span style="font-family:Verdana;">) and the last (</span><i><i><span style="font-family:Verdana;">m</span></i><span style="font-family:Verdana;"></span></i><span style="font-family:Verdana;">) of a 3</span><i><i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"></span></i><span style="font-family:Verdana;"> + 1 sequence is analyzed by means of characteristic zero-one strings. This method is used to achieve some progress on the 3</span><i><i><span style="font-family:Verdana;">x</span></i><span style="font-family:Verdana;"></span></i><span style="font-family:Verdana;"> + 1 problem. In particular, the</span> long<span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;">standing conjecture that nontrivial cycles do not exist is virtually proved using probability theory.</span></span>
作者 David C. Kay David C. Kay(Asheville, USA)
机构地区 Asheville
出处 《American Journal of Computational Mathematics》 2021年第3期226-239,共14页 美国计算数学期刊(英文)
关键词 GENERATOR RESULTANT 3<i>x</i> + 1 Cycle Generator Resultant 3<i>x</i> + 1 Cycle
  • 相关文献

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部