期刊文献+

A Theoretical Comparison among Recursive Algorithms for Fast Computation of Zernike Moments Using the Concept of Time Complexity

A Theoretical Comparison among Recursive Algorithms for Fast Computation of Zernike Moments Using the Concept of Time Complexity
下载PDF
导出
摘要 Zernike polynomials have been used in different fields such as optics, astronomy, and digital image analysis for many years. To form these polynomials, Zernike moments are essential to be determined. One of the main issues in realizing the moments is using factorial terms in their equation which cause</span><span style="font-size:10.0pt;font-family:"">s</span><span style="font-size:10.0pt;font-family:""> higher time complexity. As a solution, several methods have been presented to reduce the time complexity of these polynomials in recent years. The purpose of this research is to study several methods among the most popular recursive methods for fast Zernike computation and compare them <span>together by a global theoretical evaluation system called worst-case time co</span><span>mplexity. In this study, we have analyzed the selected algorithms and calculate</span>d the worst-case time complexity for each one. After that, the results are represented and explained and finally, a conclusion has been made by comparing th</span><span style="font-size:10.0pt;font-family:"">ese</span><span style="font-size:10.0pt;font-family:""> criteria among the studied algorithms. According to time complexity, we have observed that although some algorithms </span><span style="font-size:10.0pt;font-family:"">such </span><span style="font-size:10.0pt;font-family:"">as Wee method and Modified Prata method were successful in having the smaller time complexit<span>ies, some other approaches did not make any significant difference compa</span>r</span><span style="font-size:10.0pt;font-family:"">ed</span><span style="font-size:10.0pt;font-family:""> to the classical algorithm. Zernike polynomials have been used in different fields such as optics, astronomy, and digital image analysis for many years. To form these polynomials, Zernike moments are essential to be determined. One of the main issues in realizing the moments is using factorial terms in their equation which cause</span><span style="font-size:10.0pt;font-family:"">s</span><span style="font-size:10.0pt;font-family:""> higher time complexity. As a solution, several methods have been presented to reduce the time complexity of these polynomials in recent years. The purpose of this research is to study several methods among the most popular recursive methods for fast Zernike computation and compare them <span>together by a global theoretical evaluation system called worst-case time co</span><span>mplexity. In this study, we have analyzed the selected algorithms and calculate</span>d the worst-case time complexity for each one. After that, the results are represented and explained and finally, a conclusion has been made by comparing th</span><span style="font-size:10.0pt;font-family:"">ese</span><span style="font-size:10.0pt;font-family:""> criteria among the studied algorithms. According to time complexity, we have observed that although some algorithms </span><span style="font-size:10.0pt;font-family:"">such </span><span style="font-size:10.0pt;font-family:"">as Wee method and Modified Prata method were successful in having the smaller time complexit<span>ies, some other approaches did not make any significant difference compa</span>r</span><span style="font-size:10.0pt;font-family:"">ed</span><span style="font-size:10.0pt;font-family:""> to the classical algorithm.
作者 Nasrin Bastani Alireza Vard Mehdi Jabalameli Vahid Bastani Nasrin Bastani;Alireza Vard;Mehdi Jabalameli;Vahid Bastani(School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran;Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran;Computer Department, Islamic Azad University Najafabad Branch, Isfahan, Iran;English Department, Islamic Azad University Najafabad Branch, Isfahan, Iran)
出处 《American Journal of Computational Mathematics》 2021年第4期304-326,共23页 美国计算数学期刊(英文)
关键词 Time Complexity Uniform Model Zernike Moments Zernike Polynomi-als Time Complexity Uniform Model Zernike Moments Zernike Polynomi-als
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部