摘要
The 3x + 1 problem, is a math problem that has baffled mathematicians for over 50 years. It’s easy to explain: take any positive number, if it’s even, divide it by 2;if it’s odd, multiply it by 3 and add 1. Repeat this process with the resulting number, and the conjecture says that you will eventually reach 1. Despite testing all starting values up to an enormous number, no one has proved the conjecture is true for all possible starting values. The problem’s importance lies in its simplicity and difficulty, inspiring new ideas in mathematics and advancing fields like number theory, dynamical systems, and computer science. Proving or disproving the conjecture would revolutionize our understanding of math. The presence of infinite sequences is a matter of question. To investigate and solve this conjecture, we are utilizing a novel approach involving the fields of number theory and computer science.
The 3x + 1 problem, is a math problem that has baffled mathematicians for over 50 years. It’s easy to explain: take any positive number, if it’s even, divide it by 2;if it’s odd, multiply it by 3 and add 1. Repeat this process with the resulting number, and the conjecture says that you will eventually reach 1. Despite testing all starting values up to an enormous number, no one has proved the conjecture is true for all possible starting values. The problem’s importance lies in its simplicity and difficulty, inspiring new ideas in mathematics and advancing fields like number theory, dynamical systems, and computer science. Proving or disproving the conjecture would revolutionize our understanding of math. The presence of infinite sequences is a matter of question. To investigate and solve this conjecture, we are utilizing a novel approach involving the fields of number theory and computer science.
作者
Salvador Bermúdez Gómez
Salvador Bermúdez Gómez(Instituto Politécnico Nacional, SEPI-ESIME-Zacatenco, Mexico City, México)