期刊文献+

Using Non-Additive Measure for Optimization-Based Nonlinear Classification

Using Non-Additive Measure for Optimization-Based Nonlinear Classification
下载PDF
导出
摘要 Over the past few decades, numerous optimization-based methods have been proposed for solving the classification problem in data mining. Classic optimization-based methods do not consider attribute interactions toward classification. Thus, a novel learning machine is needed to provide a better understanding on the nature of classification when the interaction among contributions from various attributes cannot be ignored. The interactions can be described by a non-additive measure while the Choquet integral can serve as the mathematical tool to aggregate the values of attributes and the corresponding values of a non-additive measure. As a main part of this research, a new nonlinear classification method with non-additive measures is proposed. Experimental results show that applying non-additive measures on the classic optimization-based models improves the classification robustness and accuracy compared with some popular classification methods. In addition, motivated by well-known Support Vector Machine approach, we transform the primal optimization-based nonlinear classification model with the signed non-additive measure into its dual form by applying Lagrangian optimization theory and Wolfes dual programming theory. As a result, 2n – 1 parameters of the signed non-additive measure can now be approximated with m (number of records) Lagrangian multipliers by applying necessary conditions of the primal classification problem to be optimal. This method of parameter approximation is a breakthrough for solving a non-additive measure practically when there are relatively small number of training cases available (mn-1). Furthermore, the kernel-based learning method engages the nonlinear classifiers to achieve better classification accuracy. The research produces practically deliverable nonlinear models with the non-additive measure for classification problem in data mining when interactions among attributes are considered. Over the past few decades, numerous optimization-based methods have been proposed for solving the classification problem in data mining. Classic optimization-based methods do not consider attribute interactions toward classification. Thus, a novel learning machine is needed to provide a better understanding on the nature of classification when the interaction among contributions from various attributes cannot be ignored. The interactions can be described by a non-additive measure while the Choquet integral can serve as the mathematical tool to aggregate the values of attributes and the corresponding values of a non-additive measure. As a main part of this research, a new nonlinear classification method with non-additive measures is proposed. Experimental results show that applying non-additive measures on the classic optimization-based models improves the classification robustness and accuracy compared with some popular classification methods. In addition, motivated by well-known Support Vector Machine approach, we transform the primal optimization-based nonlinear classification model with the signed non-additive measure into its dual form by applying Lagrangian optimization theory and Wolfes dual programming theory. As a result, 2n – 1 parameters of the signed non-additive measure can now be approximated with m (number of records) Lagrangian multipliers by applying necessary conditions of the primal classification problem to be optimal. This method of parameter approximation is a breakthrough for solving a non-additive measure practically when there are relatively small number of training cases available (mn-1). Furthermore, the kernel-based learning method engages the nonlinear classifiers to achieve better classification accuracy. The research produces practically deliverable nonlinear models with the non-additive measure for classification problem in data mining when interactions among attributes are considered.
出处 《American Journal of Operations Research》 2012年第3期364-373,共10页 美国运筹学期刊(英文)
关键词 NONLINEAR PROGRAMMING NONLINEAR CLASSIFICATION Non-Additive MEASURE Choquet INTEGRAL Support Vector Machines Nonlinear Programming Nonlinear Classification Non-Additive Measure Choquet Integral Support Vector Machines
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部