期刊文献+

Facility Location Decisions Based on Driving Distances on Spherical Surface

Facility Location Decisions Based on Driving Distances on Spherical Surface
下载PDF
导出
摘要 Facility location problems are concerned with the location of one or more facilities in a way that optimizes a certain objective such as minimizing transportation cost, providing equitable service to customers, capturing the largest market share, etc. Many facility location decisions involving distance objective functions on Spherical Surface have been approached using algorithmic, metaheuristic algorithms, branch-and-bound algorithm, approximation algorithms, simulation, heuristic techniques, and decomposition method. These approaches are most based on Euclidean distance or Great circle distance functions. However, if the location points are widely separated, the difference between driving distance, Euclidean distance and Great circle distance may be significant and this may lead to significant variations in the locations of the corresponding optimal source points. This paper presents a framework and algorithm to use driving distances on spherical surface and explores its use as a facility location decision tool and helps companies assess the optimal locations of facilities. Facility location problems are concerned with the location of one or more facilities in a way that optimizes a certain objective such as minimizing transportation cost, providing equitable service to customers, capturing the largest market share, etc. Many facility location decisions involving distance objective functions on Spherical Surface have been approached using algorithmic, metaheuristic algorithms, branch-and-bound algorithm, approximation algorithms, simulation, heuristic techniques, and decomposition method. These approaches are most based on Euclidean distance or Great circle distance functions. However, if the location points are widely separated, the difference between driving distance, Euclidean distance and Great circle distance may be significant and this may lead to significant variations in the locations of the corresponding optimal source points. This paper presents a framework and algorithm to use driving distances on spherical surface and explores its use as a facility location decision tool and helps companies assess the optimal locations of facilities.
作者 Han Shih
机构地区 University of Missouri
出处 《American Journal of Operations Research》 2015年第5期450-492,共43页 美国运筹学期刊(英文)
关键词 FACILITY LOCATION SPHERICAL Surface Euclidean DISTANCE GREAT Circle DISTANCE Clustering HEURISTIC Method Facility Location Spherical Surface Euclidean Distance Great Circle Distance Clustering Heuristic Method
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部