期刊文献+

A Novel Statistical Analysis for Residual Stress in Injection Molding 被引量:1

A Novel Statistical Analysis for Residual Stress in Injection Molding
下载PDF
导出
摘要 Residual stresses can reduce the reliability of plastic injection molding parts. This work is an attempt to model the residual stresses as a function of injection molding parameters. More stress is placed on reducing the number of input factors and to include all possible interactions. For this purpose, two-stage experimentation is suggested: a factor screening stage and Response Surface optimization stage. In screening stage Taguchi 3 level experimental design is used to classify the input parameters as significant and non-significant factors. Eight input variables were classified into 3 non-significant and 5 significant factors using this screening stage. Thus for the Response Surface optimization stage: instead of doing 160 experiments in Central Composite, 56 are only needed after the screening stage in half Central Composite Design. The best subset and regression model fitting tools in addition to model verification using randomly selected input setting were used to select a model for predicting residual stresses with a verified Root Mean Square Error (RSME) of nearly 0.93 MPa. Residual stresses can reduce the reliability of plastic injection molding parts. This work is an attempt to model the residual stresses as a function of injection molding parameters. More stress is placed on reducing the number of input factors and to include all possible interactions. For this purpose, two-stage experimentation is suggested: a factor screening stage and Response Surface optimization stage. In screening stage Taguchi 3 level experimental design is used to classify the input parameters as significant and non-significant factors. Eight input variables were classified into 3 non-significant and 5 significant factors using this screening stage. Thus for the Response Surface optimization stage: instead of doing 160 experiments in Central Composite, 56 are only needed after the screening stage in half Central Composite Design. The best subset and regression model fitting tools in addition to model verification using randomly selected input setting were used to select a model for predicting residual stresses with a verified Root Mean Square Error (RSME) of nearly 0.93 MPa.
作者 Faisal Alkaabneh Mahmoud Barghash Yousef Abdullat Faisal Alkaabneh;Mahmoud Barghash;Yousef Abdullat(University of Jordan, Amman, Jordan)
机构地区 University of Jordan
出处 《American Journal of Operations Research》 2016年第1期90-103,共14页 美国运筹学期刊(英文)
关键词 Injection Molding Multi-Stage Experimental Design Taguchi Experimental Design Response Surface Methodology Regression Analysis Injection Molding Multi-Stage Experimental Design Taguchi Experimental Design Response Surface Methodology Regression Analysis
  • 相关文献

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部