期刊文献+

An Improved Wavelet Based Preconditioner for Sparse Linear Problems

An Improved Wavelet Based Preconditioner for Sparse Linear Problems
下载PDF
导出
摘要 In this paper, we present the construction of purely algebraic Daubechies wavelet based preconditioners for Krylov subspace iterative methods to solve linear sparse system of equations. Effective preconditioners are designed with DWTPerMod algorithm by knowing size of the matrix and the order of Daubechies wavelet. A notable feature of this algorithm is that it enables wavelet level to be chosen automatically making it more robust than other wavelet based preconditioners and avoids user choosing a level of transform. We demonstrate the efficiency of these preconditioners by applying them to several matrices from Tim Davis collection of sparse matrices for restarted GMRES. In this paper, we present the construction of purely algebraic Daubechies wavelet based preconditioners for Krylov subspace iterative methods to solve linear sparse system of equations. Effective preconditioners are designed with DWTPerMod algorithm by knowing size of the matrix and the order of Daubechies wavelet. A notable feature of this algorithm is that it enables wavelet level to be chosen automatically making it more robust than other wavelet based preconditioners and avoids user choosing a level of transform. We demonstrate the efficiency of these preconditioners by applying them to several matrices from Tim Davis collection of sparse matrices for restarted GMRES.
机构地区 不详
出处 《Applied Mathematics》 2010年第5期370-376,共7页 应用数学(英文)
关键词 Discrete Wavelet Transform PRECONDITIONERS SPARSE MATRICES Krylov SUBSPACE ITERATIVE Methods Discrete Wavelet Transform Preconditioners Sparse Matrices Krylov Subspace Iterative Methods
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部