期刊文献+

Continuous Maps on Digital Simple Closed Curves

Continuous Maps on Digital Simple Closed Curves
下载PDF
导出
摘要 We give digital analogues of classical theorems of topology for continuous functions defined on spheres, for digital simple closed curves. In particular, we show the following. ? A digital simple closed curve of more than 4 points is not contractible, i.e., its identity map is not nullhomotopic in . ? Let and be digital simple closed curves, each symmetric with respect to the origin, such that (where is the number of points in ). Let be a digitally continuous antipodal map. Then is not nullho- motopic in . ? Let be a digital simple closed curve that is symmetric with respect to the origin. Let be a digitally continuous map. Then there is a pair of antipodes such that . We give digital analogues of classical theorems of topology for continuous functions defined on spheres, for digital simple closed curves. In particular, we show the following. ? A digital simple closed curve of more than 4 points is not contractible, i.e., its identity map is not nullhomotopic in . ? Let and be digital simple closed curves, each symmetric with respect to the origin, such that (where is the number of points in ). Let be a digitally continuous antipodal map. Then is not nullho- motopic in . ? Let be a digital simple closed curve that is symmetric with respect to the origin. Let be a digitally continuous map. Then there is a pair of antipodes such that .
机构地区 不详
出处 《Applied Mathematics》 2010年第5期377-386,共10页 应用数学(英文)
关键词 DIGITAL IMAGE DIGITAL TOPOLOGY HOMOTOPY Antipodal POINT Digital Image Digital Topology Homotopy Antipodal Point
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部