期刊文献+

Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures

Convergence Criterium of Numerical Chaotic Solutions Based on Statistical Measures
下载PDF
导出
摘要 Solutions of most nonlinear differential equations have to be obtained numerically. The time series obtained by numerical integration will be a solution of the differential equation only if it is independent of the integration step h. A numerical solution is considered to have converged, when the difference between the time series for steps h and h/2 becomes smaller as h decreases. Unfortunately, this convergence criterium is unsuitable in the case of a chaotic solution, due to the extreme sensitivity to initial conditions that is characteristic of this kind of solution. We present here a criterium of convergence that involves the comparison of the attractors associated to the time series for integration time steps h and h/2. We show that the probability that the chaotic attractors associated to these time series are the same increases monotonically as the integration step h is decreased. The comparison of attractors is made using 1) the method of correlation integral, and 2) the method of statistical distance of probability distributions. Solutions of most nonlinear differential equations have to be obtained numerically. The time series obtained by numerical integration will be a solution of the differential equation only if it is independent of the integration step h. A numerical solution is considered to have converged, when the difference between the time series for steps h and h/2 becomes smaller as h decreases. Unfortunately, this convergence criterium is unsuitable in the case of a chaotic solution, due to the extreme sensitivity to initial conditions that is characteristic of this kind of solution. We present here a criterium of convergence that involves the comparison of the attractors associated to the time series for integration time steps h and h/2. We show that the probability that the chaotic attractors associated to these time series are the same increases monotonically as the integration step h is decreased. The comparison of attractors is made using 1) the method of correlation integral, and 2) the method of statistical distance of probability distributions.
机构地区 不详
出处 《Applied Mathematics》 2011年第4期436-443,共8页 应用数学(英文)
关键词 CHAOTIC ATTRACTOR STATISTICAL MEASURE NUMERICAL Integration Chaotic Attractor Statistical Measure Numerical Integration
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部