期刊文献+

Jacobi Elliptic Function Solutions for (2 + 1) Dimensional Boussinesq and Kadomtsev-Petviashvili Equation 被引量:4

Jacobi Elliptic Function Solutions for (2 + 1) Dimensional Boussinesq and Kadomtsev-Petviashvili Equation
下载PDF
导出
摘要 (2 + 1) dimensional Boussinesq and Kadomtsev-Petviashvili equation are investigated by employing Jacobi elliptic function expansion method in this paper. As a result, some new forms traveling wave solutions of the equation are reported. Numerical simulation results are shown. These new solutions may be important for the explanation of some practical physical problems. The results of this paper show that Jacobi elliptic function method can be a useful tool in obtaining evolution solutions of nonlinear system. (2 + 1) dimensional Boussinesq and Kadomtsev-Petviashvili equation are investigated by employing Jacobi elliptic function expansion method in this paper. As a result, some new forms traveling wave solutions of the equation are reported. Numerical simulation results are shown. These new solutions may be important for the explanation of some practical physical problems. The results of this paper show that Jacobi elliptic function method can be a useful tool in obtaining evolution solutions of nonlinear system.
机构地区 不详
出处 《Applied Mathematics》 2011年第11期1313-1316,共4页 应用数学(英文)
关键词 JACOBI ELLIPTIC FUNCTION Traveling Wave Solution Kadomtsev-Petviashvili Equation JACOBI ELLIPTIC FUNCTION Expansion Method Numerical Simulation Jacobi Elliptic Function Traveling Wave Solution Kadomtsev-Petviashvili Equation Jacobi Elliptic Function Expansion Method Numerical Simulation
  • 相关文献

参考文献6

二级参考文献54

  • 1Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering In: London Mathematical Society Lecture Note Series vol 149( Cambridge: Cambridge University Press).
  • 2Miura M R 1978 Backlund Transformation (Berlin: Springer-Verlag).
  • 3Hirota R 1971 Phys. Rev. Lett. 27 1192.
  • 4Malfliet W 1992 Am. J. Phys .60 659.
  • 5Lou S Y et al 1992 Acta Phys. Sin. 42 182(in Chinese).
  • 6Liu X Q 1998 Appl. Math. -J. Chinese University B 13 25.
  • 7Zhang J F et al 2001 Acta Phys. Sin. 50 1648(in Chinese).
  • 8Yan Z Y et al 1999 Acta Phys. Sin. 48 1957(in Chinese).
  • 9Chan W L and Zhang X 1994 J. Phys. A : Math. Gen . 27 407.
  • 10Chan W L and Li K S 1989 J. Math. Phys. 30 2521.

共引文献225

同被引文献9

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部