期刊文献+

Using of Particle Swarm for Performance Optimization of Helicopter Rotor Blades

Using of Particle Swarm for Performance Optimization of Helicopter Rotor Blades
下载PDF
导出
摘要 As part of a research activity at Politecnico di Torino, aiming to develop multi-disciplinary design procedures implementing nature inspired meta-heuristic algorithms, a performance design optimization procedure for helicopter rotors has been developed and tested. The procedure optimizes the aerodynamic performance of blades by selecting the point of taper initiation, the root chord, the taper ratio, and the maximum twist which minimize horsepower for different flight regimes. Satisfactory aerodynamic performance is defined by the requirements which must hold for any flight condition: the required power must be minimized, both the section drag divergence Mach number on the advancing side of the rotor disc and the maximum section lift coefficient on the retreating side of the rotor disc must be avoided and, even more important, the rotor must be trimmed. The procedure uses a comprehensive mathematical model to estimate the trim states of the helicopter and the optimization algorithm consists of a repulsive particle swarm optimization program. A comparison with an evolutionary micro-genetic algorithm is also presented. As part of a research activity at Politecnico di Torino, aiming to develop multi-disciplinary design procedures implementing nature inspired meta-heuristic algorithms, a performance design optimization procedure for helicopter rotors has been developed and tested. The procedure optimizes the aerodynamic performance of blades by selecting the point of taper initiation, the root chord, the taper ratio, and the maximum twist which minimize horsepower for different flight regimes. Satisfactory aerodynamic performance is defined by the requirements which must hold for any flight condition: the required power must be minimized, both the section drag divergence Mach number on the advancing side of the rotor disc and the maximum section lift coefficient on the retreating side of the rotor disc must be avoided and, even more important, the rotor must be trimmed. The procedure uses a comprehensive mathematical model to estimate the trim states of the helicopter and the optimization algorithm consists of a repulsive particle swarm optimization program. A comparison with an evolutionary micro-genetic algorithm is also presented.
出处 《Applied Mathematics》 2012年第10期1403-1408,共6页 应用数学(英文)
关键词 HELICOPTER FLIGHT MECHANICS NATURE Inspired META-HEURISTIC Algorithms Optimal Design Methods Helicopter Flight Mechanics Nature Inspired Meta-Heuristic Algorithms Optimal Design Methods
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部