期刊文献+

A New Randomized Pólya Urn Model

A New Randomized Pólya Urn Model
下载PDF
导出
摘要 In this paper, we propose a new class of discrete time stochastic processes generated by a two-color generalized Pólya urn, that is reinforced every time. A single urn contains a white balls, b black balls and evolves as follows: at discrete times n=1,2,…, we sample Mn balls and note their colors, say Rn are white and Mn- Rn are black. We return the drawn balls in the urn. Moreover, NnRn new white balls and Nn (Mn- Rn) new black balls are added in the urn. The numbers Mn and Nn are random variables. We show that the proportions of white balls forms a bounded martingale sequence which converges almost surely. Necessary and sufficient conditions for the limit to concentrate on the set {0,1} are given. In this paper, we propose a new class of discrete time stochastic processes generated by a two-color generalized Pólya urn, that is reinforced every time. A single urn contains a white balls, b black balls and evolves as follows: at discrete times n=1,2,…, we sample Mn balls and note their colors, say Rn are white and Mn- Rn are black. We return the drawn balls in the urn. Moreover, NnRn new white balls and Nn (Mn- Rn) new black balls are added in the urn. The numbers Mn and Nn are random variables. We show that the proportions of white balls forms a bounded martingale sequence which converges almost surely. Necessary and sufficient conditions for the limit to concentrate on the set {0,1} are given.
出处 《Applied Mathematics》 2012年第12期2118-2122,共5页 应用数学(英文)
关键词 URN MODEL MARTINGALE ASYMPTOTIC EXCHANGEABILITY Urn Model Martingale Asymptotic Exchangeability
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部