期刊文献+

An Evaluation for the Probability Density of the First Hitting Time

An Evaluation for the Probability Density of the First Hitting Time
下载PDF
导出
摘要 Let h(t) be a smooth function, Bt a standard Brownian motion and th=inf{t;Bt=h(t)} the first hitting time. In this paper, new formulations are derived to evaluate the probability density of the first hitting time. If u(x, t) denotes the density function of x=Bt for t th, then uxx=2ut and u(h(t),t)=0. Moreover, the hitting time density dh(t) is 1/2ux(h(t),t). Applying some partial differential equation techniques, we derive a simple integral equation for dh(t). Two examples are demonstrated in this article. Let h(t) be a smooth function, Bt a standard Brownian motion and th=inf{t;Bt=h(t)} the first hitting time. In this paper, new formulations are derived to evaluate the probability density of the first hitting time. If u(x, t) denotes the density function of x=Bt for t th, then uxx=2ut and u(h(t),t)=0. Moreover, the hitting time density dh(t) is 1/2ux(h(t),t). Applying some partial differential equation techniques, we derive a simple integral equation for dh(t). Two examples are demonstrated in this article.
出处 《Applied Mathematics》 2013年第5期792-796,共5页 应用数学(英文)
关键词 BROWNIAN Motion FIRST Hitting Time HEAT EQUATION BOUNDARY VALUE Problem Brownian Motion First Hitting Time Heat Equation Boundary Value Problem
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部