摘要
In this paper, the Laplace transform definition is implemented without resorting to Adomian decomposition nor Homotopy perturbation methods. We show that the said transform can be simply calculated by differentiation of the original function. Various analytic consequent results are given. The simplicity and efficacy of the method are illustrated through many examples with shown Maple graphs, and transform tables are provided. Finally, a new infinite series representation related to Laplace transforms of trigonometric functions is proposed.
In this paper, the Laplace transform definition is implemented without resorting to Adomian decomposition nor Homotopy perturbation methods. We show that the said transform can be simply calculated by differentiation of the original function. Various analytic consequent results are given. The simplicity and efficacy of the method are illustrated through many examples with shown Maple graphs, and transform tables are provided. Finally, a new infinite series representation related to Laplace transforms of trigonometric functions is proposed.