摘要
This article aims to discuss the strike two-dimensional wind vector on geostationary satellite imageries. The magnitude and direction of the wind vector are decided by the moving speed of the clouds. First, based on the features of the cloud map, we extract the characteristics of clouds and establish matching model for the clouds image. Maximum correlation coefficient between the target modules and tracking module is obtained by using infrared brightness temperature cross-correlation coefficient method. Then, the beginning and end of the wind vector can be ascertained. Using the spherical triangles of the law of cosines, we determine the magnitude and direction of the wind vector.
This article aims to discuss the strike two-dimensional wind vector on geostationary satellite imageries. The magnitude and direction of the wind vector are decided by the moving speed of the clouds. First, based on the features of the cloud map, we extract the characteristics of clouds and establish matching model for the clouds image. Maximum correlation coefficient between the target modules and tracking module is obtained by using infrared brightness temperature cross-correlation coefficient method. Then, the beginning and end of the wind vector can be ascertained. Using the spherical triangles of the law of cosines, we determine the magnitude and direction of the wind vector.