期刊文献+

A Spectral Integral Equation Solution of the Gross-Pitaevskii Equation

A Spectral Integral Equation Solution of the Gross-Pitaevskii Equation
下载PDF
导出
摘要 The Gross-Pitaevskii equation (GPE), that describes the wave function of a number of coherent Bose particles contained in a trap, contains the cube of the normalized wave function, times a factor proportional to the number of coherent atoms. The square of the wave function, times the above mentioned factor, is defined as the Hartree potential. A method implemented here for the numerical solution of the GPE consists in obtaining the Hartree potential iteratively, starting with the Thomas Fermi approximation to this potential. The energy eigenvalues and the corresponding wave functions for each successive potential are obtained by a spectral method described previously. After approximately 35 iterations a stability of eight significant figures for the energy eigenvalues is obtained. This method has the advantage of being physically intuitive, and could be extended to the calculation of a shell-model potential in nuclear physics, once the Pauli exclusion principle is allowed for. The Gross-Pitaevskii equation (GPE), that describes the wave function of a number of coherent Bose particles contained in a trap, contains the cube of the normalized wave function, times a factor proportional to the number of coherent atoms. The square of the wave function, times the above mentioned factor, is defined as the Hartree potential. A method implemented here for the numerical solution of the GPE consists in obtaining the Hartree potential iteratively, starting with the Thomas Fermi approximation to this potential. The energy eigenvalues and the corresponding wave functions for each successive potential are obtained by a spectral method described previously. After approximately 35 iterations a stability of eight significant figures for the energy eigenvalues is obtained. This method has the advantage of being physically intuitive, and could be extended to the calculation of a shell-model potential in nuclear physics, once the Pauli exclusion principle is allowed for.
机构地区 Physics Department
出处 《Applied Mathematics》 2013年第10期70-77,共8页 应用数学(英文)
关键词 Iterative SOLUTION of the Gross-Pitaevskii EQUATION SPECTRAL SOLUTION of an Integral EQUATION BOSE-EINSTEIN CONDENSATES Iterative Solution of the Gross-Pitaevskii Equation Spectral Solution of an Integral Equation Bose-Einstein Condensates
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部