期刊文献+

Solutions of Impulsive Diffusion and Von-Foerster-Makendrick Models Using the B-Transform

Solutions of Impulsive Diffusion and Von-Foerster-Makendrick Models Using the B-Transform
下载PDF
导出
摘要 In this paper we explore the possibility of using the scientific computing method to obtain the inverse B-Transform of Oyelami and Ale [1]. Using some suitable conditions and the symbolic programming method in Maple 15 we obtained the asymptotic expansion for the inverse B-transform then used the residue theorem to obtain solutions of Impulsive Diffusion and Von-Foerster-Makendrick models. The results obtained suggest that drugs that are needed for prophylactic or chemotherapeutic purposing the concentration must not be allowed to oscillate about the steady state. Drugs that are to be used for immunization should not oscillate at steady state in order to have long residue effect in the blood. From Von-Foerster-Makendrick model, we obtained the conditions for population of the specie to attain super saturation level through the “dying effect” phenomenon ([2-4]). We used this phenomenon to establish that the environment cannot accommodate the population of the specie anymore which mean that a catastrophic stage t* is reached that only the fittest can survive beyond this regime (i.e. t > t*) and that there would be sharp competition for food, shelter and waste disposal etc. In this paper we explore the possibility of using the scientific computing method to obtain the inverse B-Transform of Oyelami and Ale [1]. Using some suitable conditions and the symbolic programming method in Maple 15 we obtained the asymptotic expansion for the inverse B-transform then used the residue theorem to obtain solutions of Impulsive Diffusion and Von-Foerster-Makendrick models. The results obtained suggest that drugs that are needed for prophylactic or chemotherapeutic purposing the concentration must not be allowed to oscillate about the steady state. Drugs that are to be used for immunization should not oscillate at steady state in order to have long residue effect in the blood. From Von-Foerster-Makendrick model, we obtained the conditions for population of the specie to attain super saturation level through the “dying effect” phenomenon ([2-4]). We used this phenomenon to establish that the environment cannot accommodate the population of the specie anymore which mean that a catastrophic stage t* is reached that only the fittest can survive beyond this regime (i.e. t > t*) and that there would be sharp competition for food, shelter and waste disposal etc.
出处 《Applied Mathematics》 2013年第12期1637-1646,共10页 应用数学(英文)
关键词 B-Transform IMPULSIVE Diffusion Von-Foerster-Makendrick MODELS Residue Theorem MAPLE Symbolic Programme and Asymptotic Expansion B-Transform Impulsive Diffusion Von-Foerster-Makendrick Models Residue Theorem Maple Symbolic Programme and Asymptotic Expansion
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部