摘要
In sparse-angle X-ray tomography reconstruction, where only a small number of projection images are taken around the object, appropriate sinogram interpolation has a significant impact on image quality. A novel sinogram interpolation method is introduced for extreme sparse tomographic reconstruction where only nine measured projection images are available. The sinogram is interpolated by solving characteristics of the so-called warps, which can be considered as approximation sine waves in a limited region. The numerical evidence suggests that this approach gives superior results over standard interpolation methods when the tomographic data are extremely sparse and noisy.
In sparse-angle X-ray tomography reconstruction, where only a small number of projection images are taken around the object, appropriate sinogram interpolation has a significant impact on image quality. A novel sinogram interpolation method is introduced for extreme sparse tomographic reconstruction where only nine measured projection images are available. The sinogram is interpolated by solving characteristics of the so-called warps, which can be considered as approximation sine waves in a limited region. The numerical evidence suggests that this approach gives superior results over standard interpolation methods when the tomographic data are extremely sparse and noisy.