期刊文献+

Behavior of the Numerical Integration Error

Behavior of the Numerical Integration Error
下载PDF
导出
摘要 In this work, we consider different numerical methods for the approximation of definite integrals. The three basic methods used here are the Midpoint, the Trapezoidal, and Simpson’s rules. We trace the behavior of the error when we refine the mesh and show that Richardson’s extrapolation improves the rate of convergence of the basic methods when the integrands are sufficiently differentiable many times. However, Richardson’s extrapolation does not work when we approximate improper integrals or even proper integrals from functions without smooth derivatives. In order to save computational resources, we construct an adaptive recursive procedure. We also show that there is a lower limit to the error during computations with floating point arithmetic. In this work, we consider different numerical methods for the approximation of definite integrals. The three basic methods used here are the Midpoint, the Trapezoidal, and Simpson’s rules. We trace the behavior of the error when we refine the mesh and show that Richardson’s extrapolation improves the rate of convergence of the basic methods when the integrands are sufficiently differentiable many times. However, Richardson’s extrapolation does not work when we approximate improper integrals or even proper integrals from functions without smooth derivatives. In order to save computational resources, we construct an adaptive recursive procedure. We also show that there is a lower limit to the error during computations with floating point arithmetic.
出处 《Applied Mathematics》 2014年第10期1412-1426,共15页 应用数学(英文)
关键词 NUMERICAL Integration ALGORITHMS with AUTOMATIC RESULT VERIFICATION Roundoff ERROR Numerical Integration Algorithms with Automatic Result Verification Roundoff Error
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部