摘要
Short-term memory allows individuals to recall stimuli, such as numbers or words, for several seconds to several minutes without rehearsal. Although the capacity of short-term memory is considered to be 7 ±?2 items, this can be increased through a process called chunking. For example, in Japan, 11-digit cellular phone numbers and 10-digit toll free numbers are chunked into three groups of three or four digits: 090-XXXX-XXXX and 0120-XXX-XXX, respectively. We use probability theory to predict that the most effective chunking involves groups of three or four items, such as in phone numbers. However, a 16-digit credit card number exceeds the capacity of short-term memory, even when chunked into groups of four digits, such as XXXX-XXXX-XXXX-XXXX. Based on these data, 16-digit credit card numbers should be sufficient for security purposes.
Short-term memory allows individuals to recall stimuli, such as numbers or words, for several seconds to several minutes without rehearsal. Although the capacity of short-term memory is considered to be 7 ±?2 items, this can be increased through a process called chunking. For example, in Japan, 11-digit cellular phone numbers and 10-digit toll free numbers are chunked into three groups of three or four digits: 090-XXXX-XXXX and 0120-XXX-XXX, respectively. We use probability theory to predict that the most effective chunking involves groups of three or four items, such as in phone numbers. However, a 16-digit credit card number exceeds the capacity of short-term memory, even when chunked into groups of four digits, such as XXXX-XXXX-XXXX-XXXX. Based on these data, 16-digit credit card numbers should be sufficient for security purposes.