期刊文献+

On <i>q</i>-Deformed Calculus in Quantum Geometry

On <i>q</i>-Deformed Calculus in Quantum Geometry
下载PDF
导出
摘要 The relation between noncommutative (or quantum) geometry and themathematics of spacesis in many ways similar to the relation between quantum physicsand classical physics. One moves from the commutative algebra of functions on a space (or a commutative algebra of classical observable in classical physics) to a noncommutative algebra representing a noncommutative space (or a noncommutative algebra of quantum observables in quantum physics). The object of this paper is to study the basic rules governing q-calculus as compared with the classical Newton-Leibnitz calculus. The relation between noncommutative (or quantum) geometry and themathematics of spacesis in many ways similar to the relation between quantum physicsand classical physics. One moves from the commutative algebra of functions on a space (or a commutative algebra of classical observable in classical physics) to a noncommutative algebra representing a noncommutative space (or a noncommutative algebra of quantum observables in quantum physics). The object of this paper is to study the basic rules governing q-calculus as compared with the classical Newton-Leibnitz calculus.
出处 《Applied Mathematics》 2014年第10期1586-1593,共8页 应用数学(英文)
关键词 Quantum Geometry q-Numbers q-Factorials Q-CALCULUS Quantum Geometry q-Numbers q-Factorials q-Calculus
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部