期刊文献+

Particle Swarm Optimized Optimal Threshold Value Selection for Clustering based on Correlation Fractal Dimension

Particle Swarm Optimized Optimal Threshold Value Selection for Clustering based on Correlation Fractal Dimension
下载PDF
导出
摘要 The work on the paper is focused on the use of Fractal Dimension in clustering for evolving data streams. Recently Anuradha et al. proposed a new approach based on Relative Change in Fractal Dimension (RCFD) and damped window model for clustering evolving data streams. Through observations on the aforementioned referred paper, this paper reveals that the formation of quality cluster is heavily predominant on the suitable selection of threshold value. In the above-mentionedpaper Anuradha et al. have used a heuristic approach for fixing the threshold value. Although the outcome of the approach is acceptable, however, the approach is purely based on random selection and has no basis to claim the acceptability in general. In this paper a novel method is proposed to optimally compute threshold value using a population based randomized approach known as particle swarm optimization (PSO). Simulations are done on two huge data sets KDD Cup 1999 data set and the Forest Covertype data set and the results of the cluster quality are compared with the fixed approach. The comparison reveals that the chosen value of threshold by Anuradha et al., is robust and can be used with confidence. The work on the paper is focused on the use of Fractal Dimension in clustering for evolving data streams. Recently Anuradha et al. proposed a new approach based on Relative Change in Fractal Dimension (RCFD) and damped window model for clustering evolving data streams. Through observations on the aforementioned referred paper, this paper reveals that the formation of quality cluster is heavily predominant on the suitable selection of threshold value. In the above-mentionedpaper Anuradha et al. have used a heuristic approach for fixing the threshold value. Although the outcome of the approach is acceptable, however, the approach is purely based on random selection and has no basis to claim the acceptability in general. In this paper a novel method is proposed to optimally compute threshold value using a population based randomized approach known as particle swarm optimization (PSO). Simulations are done on two huge data sets KDD Cup 1999 data set and the Forest Covertype data set and the results of the cluster quality are compared with the fixed approach. The comparison reveals that the chosen value of threshold by Anuradha et al., is robust and can be used with confidence.
出处 《Applied Mathematics》 2014年第10期1615-1622,共8页 应用数学(英文)
关键词 CORRELATION FRACTAL DIMENSION FRACTAL DIMENSION CLUSTERING Particle SWARM Optimization Data STREAM CLUSTERING Correlation Fractal Dimension Fractal Dimension Clustering Particle Swarm Optimization Data Stream Clustering
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部