期刊文献+

Mathematical Analysis of a Large Scale Vector SIS Malaria Model in a Patchy Environment

Mathematical Analysis of a Large Scale Vector SIS Malaria Model in a Patchy Environment
下载PDF
导出
摘要 We answer the stability question of the large scale SIS model describing transmission of highland malaria in Western Kenya in a patchy environment, formulated in [1]. There are two equilibrium states and their stability depends on the basic reproduction number, Ro?[2]. If Ro ≤1, the disease-free steady solution is globally asymptotically stable and the disease always dies out. If Ro >1, there exists a unique endemic equilibrium which is globally stable and the disease persists. Application is done on data from Western Kenya. The age structure reduces the level of infection and the populations settle to the equilibrium faster than in the model without age structure. We answer the stability question of the large scale SIS model describing transmission of highland malaria in Western Kenya in a patchy environment, formulated in [1]. There are two equilibrium states and their stability depends on the basic reproduction number, Ro?[2]. If Ro ≤1, the disease-free steady solution is globally asymptotically stable and the disease always dies out. If Ro >1, there exists a unique endemic equilibrium which is globally stable and the disease persists. Application is done on data from Western Kenya. The age structure reduces the level of infection and the populations settle to the equilibrium faster than in the model without age structure.
出处 《Applied Mathematics》 2014年第13期1913-1926,共14页 应用数学(英文)
关键词 Highland MALARIA DIFFERENTIATED SUSCEPTIBILITY and Infectivity MONOTONE DYNAMICAL Systems Highland Malaria Differentiated Susceptibility and Infectivity Monotone Dynamical Systems
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部