期刊文献+

On Universal Mechanics and Superluminal Velocities

On Universal Mechanics and Superluminal Velocities
下载PDF
导出
摘要 In this work we continue to set up the theory of universal space and time and derive the Euclidean form of the scaling transformations. Two types of velocities emerge, inertial and universal, with the former bound by the light velocity c whereas the latter is unbound, and may accommodate consistently particles’ velocities possibly exceeding c. The inertial velocity is the ratio of the simultaneous source’s displacement and the corresponding length of the light trip to the observer, whereas the universal velocity has its familiar meaning for motion in a synchronous inertial frame. Defining the momentum as the product of universal velocity and mass, and utilizing the already established mass-energy equivalence, the mechanics constructed on the bases of the new concepts, named universal mechanics, admits superluminal velocities but yet coincides with the relativistic mechanics in its basic dynamical components and their inter-relations. The possibility of superluminal velocities provides a straight forward explanation of the presence of the μ-meson particles abundantly at the sea level despite their generation at high altitude and their short lifetime. In this work we continue to set up the theory of universal space and time and derive the Euclidean form of the scaling transformations. Two types of velocities emerge, inertial and universal, with the former bound by the light velocity c whereas the latter is unbound, and may accommodate consistently particles’ velocities possibly exceeding c. The inertial velocity is the ratio of the simultaneous source’s displacement and the corresponding length of the light trip to the observer, whereas the universal velocity has its familiar meaning for motion in a synchronous inertial frame. Defining the momentum as the product of universal velocity and mass, and utilizing the already established mass-energy equivalence, the mechanics constructed on the bases of the new concepts, named universal mechanics, admits superluminal velocities but yet coincides with the relativistic mechanics in its basic dynamical components and their inter-relations. The possibility of superluminal velocities provides a straight forward explanation of the presence of the μ-meson particles abundantly at the sea level despite their generation at high altitude and their short lifetime.
出处 《Applied Mathematics》 2014年第17期2728-2738,共11页 应用数学(英文)
关键词 INERTIAL Velocity SUPERLUMINAL SPEEDS UNIVERSAL MECHANICS Inertial Velocity Superluminal Speeds Universal Mechanics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部