期刊文献+

Infinite Number of Disjoint Chaotic Subsystems of Cellular Automaton Rule 106

Infinite Number of Disjoint Chaotic Subsystems of Cellular Automaton Rule 106
下载PDF
导出
摘要 In this paper, the dynamics of rule 106, a Chua’s hyper Bernoulli cellular automata rule, is studied and discussed from the viewpoint of symbolic dynamics. It is presented that rule 106 defines a chaotic subsystem which is topologically mixing and possesses the positive topologically entropy. An effective method of constructing its chaotic subsystems is proposed. Indeed, it is interesting to find that this rule is filled with infinitely many disjoint chaotic subsystems. Special attention is paid to each subsystem on which rule 106 is topologically mixing and possesses the positive topologically entropy. Therefore, it is natural to argue that the intrinsic complexity of rule 106 is high from this viewpoint. In this paper, the dynamics of rule 106, a Chua’s hyper Bernoulli cellular automata rule, is studied and discussed from the viewpoint of symbolic dynamics. It is presented that rule 106 defines a chaotic subsystem which is topologically mixing and possesses the positive topologically entropy. An effective method of constructing its chaotic subsystems is proposed. Indeed, it is interesting to find that this rule is filled with infinitely many disjoint chaotic subsystems. Special attention is paid to each subsystem on which rule 106 is topologically mixing and possesses the positive topologically entropy. Therefore, it is natural to argue that the intrinsic complexity of rule 106 is high from this viewpoint.
出处 《Applied Mathematics》 2014年第20期3256-3263,共8页 应用数学(英文)
关键词 Cellular AUTOMATA Chaos Topologically Entropy Topologically Mixing SUBSYSTEM Cellular Automata Chaos Topologically Entropy Topologically Mixing Subsystem
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部