期刊文献+

Coupled-Nonlinear Elastic Structure: An Innovative Parameterization Scheme of the Motion Equations

Coupled-Nonlinear Elastic Structure: An Innovative Parameterization Scheme of the Motion Equations
下载PDF
导出
摘要 In this paper, I applied the Euler-Lagrange equations in order to obtain the coupled-nonlinear motion equations for an elastic structure. The model is composed of six coupled and strongly nonlinear ordinary differential equations. The new contribution of this work arises from the fact that a convenient and innovative parameterization of the motion equations for the elastic system was developed with all mathematical nonlinearities taken into account, without the usage of any simplifying linearization procedure, as found in most of the works presented in the literature. The results can be used as a source for conducting experiments and can be useful for a better understanding and control of such nonlinear elastic systems. In this paper, I applied the Euler-Lagrange equations in order to obtain the coupled-nonlinear motion equations for an elastic structure. The model is composed of six coupled and strongly nonlinear ordinary differential equations. The new contribution of this work arises from the fact that a convenient and innovative parameterization of the motion equations for the elastic system was developed with all mathematical nonlinearities taken into account, without the usage of any simplifying linearization procedure, as found in most of the works presented in the literature. The results can be used as a source for conducting experiments and can be useful for a better understanding and control of such nonlinear elastic systems.
作者 S. A. David
出处 《Applied Mathematics》 2014年第21期3460-3473,共14页 应用数学(英文)
关键词 MATHEMATICAL Modeling LIGHTWEIGHT ELEMENTS Dynamic Systems MECHANICS Mathematical Modeling Lightweight Elements Dynamic Systems Mechanics
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部