期刊文献+

Loose Waves in Viscoelastic Cylindrical Wave Guide with Radial Crack

Loose Waves in Viscoelastic Cylindrical Wave Guide with Radial Crack
下载PDF
导出
摘要 The main features are the length of the waveguide in one direction, as well as limitations and localization of the wave beam in other areas. There is described the technique of the solution of tasks on distribution of waves in an infinite cylindrical waveguide with a radial crack. Also numerical results are given in the article. Viscous properties of the material are taken into account by means of an integral operator Voltaire. Research is conducted in the framework of the spatial theory of visco elastic. The technique is based on the separation of spatial variables and formulates the boundary eigenvalue problem that can be solved by the method of orthogonal sweep Godunov. In the given paper we obtain numeric values of the phase velocity depending on of wave numbers. The obtained numerical results are compared with the known data. This work is continuation of article [1]. Statement of the problem and methodology of partial solutions are described in [1]. In this work, we present a complete statement of the problem, methods of solution and discuss the numerical results. The main features are the length of the waveguide in one direction, as well as limitations and localization of the wave beam in other areas. There is described the technique of the solution of tasks on distribution of waves in an infinite cylindrical waveguide with a radial crack. Also numerical results are given in the article. Viscous properties of the material are taken into account by means of an integral operator Voltaire. Research is conducted in the framework of the spatial theory of visco elastic. The technique is based on the separation of spatial variables and formulates the boundary eigenvalue problem that can be solved by the method of orthogonal sweep Godunov. In the given paper we obtain numeric values of the phase velocity depending on of wave numbers. The obtained numerical results are compared with the known data. This work is continuation of article [1]. Statement of the problem and methodology of partial solutions are described in [1]. In this work, we present a complete statement of the problem, methods of solution and discuss the numerical results.
出处 《Applied Mathematics》 2014年第21期3518-3524,共7页 应用数学(英文)
关键词 The WAVE Guide WAVE Cylinder CRACK Integral Operator Differential Equations RELAXATION Kernel Orthogonal SWEEP Approximation Partial Derivatives The Phase Velocity Frequency Damping Factor The Wave Guide Wave Cylinder Crack Integral Operator Differential Equations Relaxation Kernel Orthogonal Sweep Approximation Partial Derivatives The Phase Velocity Frequency Damping Factor
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部