期刊文献+

Intel^(■) Math Kernel Library PARDISO* forIntel^(■) Xeon Phi^(TM) Manycore Coprocessor

下载PDF
导出
摘要 The paper describes an efficient direct method to solve an equation Ax = b, where A is a sparse matrix, on the Intel®Xeon PhiTM coprocessor. The main challenge for such a system is how to engage all available threads (about 240) and how to reduce OpenMP* synchronization overhead, which is very expensive for hundreds of threads. The method consists of decomposing A into a product of lower-triangular, diagonal, and upper triangular matrices followed by solves of the resulting three subsystems. The main idea is based on the hybrid parallel algorithm used in the Intel®Math Kernel Library Parallel Direct Sparse Solver for Clusters [1]. Our implementation exploits a static scheduling algorithm during the factorization step to reduce OpenMP synchronization overhead. To effectively engage all available threads, a three-level approach of parallelization is used. Furthermore, we demonstrate that our implementation can perform up to 100 times better on factorization step and up to 65 times better in terms of overall performance on the 240 threads of the Intel®Xeon PhiTM coprocessor. The paper describes an efficient direct method to solve an equation Ax = b, where A is a sparse matrix, on the Intel®Xeon PhiTM coprocessor. The main challenge for such a system is how to engage all available threads (about 240) and how to reduce OpenMP* synchronization overhead, which is very expensive for hundreds of threads. The method consists of decomposing A into a product of lower-triangular, diagonal, and upper triangular matrices followed by solves of the resulting three subsystems. The main idea is based on the hybrid parallel algorithm used in the Intel®Math Kernel Library Parallel Direct Sparse Solver for Clusters [1]. Our implementation exploits a static scheduling algorithm during the factorization step to reduce OpenMP synchronization overhead. To effectively engage all available threads, a three-level approach of parallelization is used. Furthermore, we demonstrate that our implementation can perform up to 100 times better on factorization step and up to 65 times better in terms of overall performance on the 240 threads of the Intel®Xeon PhiTM coprocessor.
机构地区 Intel Corporation
出处 《Applied Mathematics》 2015年第8期1276-1281,共6页 应用数学(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部