摘要
The effect of Pasternak foundation and non-homogenity on the axisymmetric vibrations of polar orthotropic parabolically varying tapered circular plates has been analyzed on the basis of classical plate theory. Ritz method has been used to find the numerical solution of the specified problem. The efficiency of the Ritz method depends on the choice of basis function based upon deflection of polar orthotropic plates. The effects of different plate parameters viz. elastic foundation, non-homogeneity, taper parameter and that of orthotropy on fundamental, second and third mode of vibration have been studied for clamped and simply-supported boundary conditions. Mode shapes for specified plates have been drawn for both the boundary conditions. Convergence and comparison studies have been carried out for specified plates.
The effect of Pasternak foundation and non-homogenity on the axisymmetric vibrations of polar orthotropic parabolically varying tapered circular plates has been analyzed on the basis of classical plate theory. Ritz method has been used to find the numerical solution of the specified problem. The efficiency of the Ritz method depends on the choice of basis function based upon deflection of polar orthotropic plates. The effects of different plate parameters viz. elastic foundation, non-homogeneity, taper parameter and that of orthotropy on fundamental, second and third mode of vibration have been studied for clamped and simply-supported boundary conditions. Mode shapes for specified plates have been drawn for both the boundary conditions. Convergence and comparison studies have been carried out for specified plates.