期刊文献+

An Evolutionary Approach for Personalized Therapy in Multiple Myeloma

An Evolutionary Approach for Personalized Therapy in Multiple Myeloma
下载PDF
导出
摘要 Most patients with multiple myeloma (MM) respond well to initial therapy, but invariably relapse due to evolution of resistant phenotypes. Here we examine the evolutionary dynamics of proliferation of resistant MM phenotypes during therapy. By applying computational models to data from three clinical trials for newly diagnosed MM patients, we have quantified the size and level of chemoresistance of subpopulations within the tumor burden in 124 patients, prior to and during therapy. Subsequently, we used the computational models to explore an alternative strategy of “adaptive therapy” (AT), which includes defined treatment holidays, to improve the duration of “controlled disease” (CD). Simulations showed that AT could prolong CD in all three trials: 50.0% vs. 11.1% 50-month CD for a single agent approach in older adults (P = 0.0123), 80.4% vs. 58.8% 60-month CD for a multi-agent bortezomib based therapy (P = 0.0082), and 54.0% vs. 24.0% 60-month CD for a multi-agent lenalidomide based therapy (P < 0.0001). Increases in duration of CD resulted from the stabilization of tumor burden, which in turn would delay the growth of chemoresistant sub-populations in patients with partial (PR), or very good partial response (VGPR). These computational algorithms suggest that AT may provide an alternative and feasible therapeutic management strategy in MM. Most patients with multiple myeloma (MM) respond well to initial therapy, but invariably relapse due to evolution of resistant phenotypes. Here we examine the evolutionary dynamics of proliferation of resistant MM phenotypes during therapy. By applying computational models to data from three clinical trials for newly diagnosed MM patients, we have quantified the size and level of chemoresistance of subpopulations within the tumor burden in 124 patients, prior to and during therapy. Subsequently, we used the computational models to explore an alternative strategy of “adaptive therapy” (AT), which includes defined treatment holidays, to improve the duration of “controlled disease” (CD). Simulations showed that AT could prolong CD in all three trials: 50.0% vs. 11.1% 50-month CD for a single agent approach in older adults (P = 0.0123), 80.4% vs. 58.8% 60-month CD for a multi-agent bortezomib based therapy (P = 0.0082), and 54.0% vs. 24.0% 60-month CD for a multi-agent lenalidomide based therapy (P < 0.0001). Increases in duration of CD resulted from the stabilization of tumor burden, which in turn would delay the growth of chemoresistant sub-populations in patients with partial (PR), or very good partial response (VGPR). These computational algorithms suggest that AT may provide an alternative and feasible therapeutic management strategy in MM.
作者 Ariosto S. Silva Ashley Durand Maria C. Ribeiro Melissa Alsina Kenneth Shain Rachid Baz Ariosto S. Silva;Ashley Durand;Maria C. Ribeiro;Melissa Alsina;Kenneth Shain;Rachid Baz(Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA;Department of Total Cancer Care, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA;Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA)
出处 《Applied Mathematics》 2016年第2期159-169,共11页 应用数学(英文)
关键词 Multiple Myeloma Adaptive Therapy Evolutionary Dynamics Competitive Release Multiple Myeloma Adaptive Therapy Evolutionary Dynamics Competitive Release
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部