期刊文献+

Estimates of Approximation Error by Legendre Wavelet

Estimates of Approximation Error by Legendre Wavelet
下载PDF
导出
摘要 This paper first introduces Legendre wavelet bases and derives their rich properties. Then these properties are applied to estimation of approximation error upper bounded in spaces  and  by norms  and  , respectively. These estimate results are valuable to solve integral-differential equations by Legendre wavelet method. This paper first introduces Legendre wavelet bases and derives their rich properties. Then these properties are applied to estimation of approximation error upper bounded in spaces  and  by norms  and  , respectively. These estimate results are valuable to solve integral-differential equations by Legendre wavelet method.
作者 Xiaoyang Zheng Zhengyuan Wei Xiaoyang Zheng;Zhengyuan Wei(College of Mathematics and Statistics, Chongqing University of Technology, Chongqing, China)
出处 《Applied Mathematics》 2016年第7期694-700,共7页 应用数学(英文)
关键词 Legendre Wavelet ESTIMATE Exponential ?-Hölder Continuity Legendre Wavelet Estimate Exponential ?-Hölder Continuity
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部