期刊文献+

Dynamics of a Pituitary Cell Model: Dependence on Long-Lasting External Stimulation and Potassium Conductance Kinetics

Dynamics of a Pituitary Cell Model: Dependence on Long-Lasting External Stimulation and Potassium Conductance Kinetics
下载PDF
导出
摘要 Stern et al. have developed a mathematical model describing pseudo-plateau bursting of pituitary cells. This model is formulated based on the Hodgkin-Huxley scheme and described by a system of nonlinear ordinary differential equations. In the present study, computer simulation analysis of this model was performed to evaluate the correlation between the dynamic states of the model and two system parameters: long-lasting external stimulation (Iapp) and the time constant of delayed-rectifier potassium conductance activation (τn). Computer simulation results revealed that the model showed four different dynamic states: a hyperpolarized steady state, a depolarized steady state, a repetitive spiking state, and a bursting state. An increase in Iapp changed the dynamic states from the hyperpolarized steady state to bursting state to depolarized steady state when τn was fixed at smaller values, whereas it changed the dynamic states from the hyperpolarized steady state to bursting state to repetitive spiking state when τn was fixed at larger values. An increase in τn 1) did not change the dynamic states when Iapp was fixed at a very small value, 2) changed the dynamic states from the depolarized steady state to repetitive spiking state when Iapp was fixed at a very large value, and 3) changed the dynamic states from the depolarized steady state to bursting state to repetitive spiking state when Iapp was fixed at an intermediate value. Stern et al. have developed a mathematical model describing pseudo-plateau bursting of pituitary cells. This model is formulated based on the Hodgkin-Huxley scheme and described by a system of nonlinear ordinary differential equations. In the present study, computer simulation analysis of this model was performed to evaluate the correlation between the dynamic states of the model and two system parameters: long-lasting external stimulation (Iapp) and the time constant of delayed-rectifier potassium conductance activation (τn). Computer simulation results revealed that the model showed four different dynamic states: a hyperpolarized steady state, a depolarized steady state, a repetitive spiking state, and a bursting state. An increase in Iapp changed the dynamic states from the hyperpolarized steady state to bursting state to depolarized steady state when τn was fixed at smaller values, whereas it changed the dynamic states from the hyperpolarized steady state to bursting state to repetitive spiking state when τn was fixed at larger values. An increase in τn 1) did not change the dynamic states when Iapp was fixed at a very small value, 2) changed the dynamic states from the depolarized steady state to repetitive spiking state when Iapp was fixed at a very large value, and 3) changed the dynamic states from the depolarized steady state to bursting state to repetitive spiking state when Iapp was fixed at an intermediate value.
作者 Takaaki Shirahata Takaaki Shirahata(Institute of Neuroscience, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Japan)
出处 《Applied Mathematics》 2016年第9期861-866,共6页 应用数学(英文)
关键词 Mathematical Model Computer Simulation Pituitary Cells Pseudo-Plateau Bursting Mathematical Model Computer Simulation Pituitary Cells Pseudo-Plateau Bursting
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部