期刊文献+

Multi-Objective Optimization of University Bus Based on Passenger Probability Density Estimation

Multi-Objective Optimization of University Bus Based on Passenger Probability Density Estimation
下载PDF
导出
摘要 In this paper, a multi-objective optimization model is presented, based on Parzen Window method which can make a theoretical analysis of the probability density function of passengers and determine the demand over a corresponding period by integration. This model can minimize the total of waiting time of passengers and the running cost of school buses with several constrains including the passengers’ numbers and the longest endurance time. Moreover, the data from Wuhan University of Technology, used as an example, verify the feasibility of the model. At last, the whole results are calculated by the Particle Swarm Optimization. In this paper, a multi-objective optimization model is presented, based on Parzen Window method which can make a theoretical analysis of the probability density function of passengers and determine the demand over a corresponding period by integration. This model can minimize the total of waiting time of passengers and the running cost of school buses with several constrains including the passengers’ numbers and the longest endurance time. Moreover, the data from Wuhan University of Technology, used as an example, verify the feasibility of the model. At last, the whole results are calculated by the Particle Swarm Optimization.
机构地区 College of Science
出处 《Applied Mathematics》 2017年第5期621-629,共9页 应用数学(英文)
关键词 School BUS Parzen WINDOW MULTI-OBJECTIVE OPTIMIZATION Particle SWARM OPTIMIZATION School Bus Parzen Window Multi-objective Optimization Particle Swarm Optimization
  • 相关文献

参考文献5

二级参考文献34

  • 1郭强,李育安,郭耀煌.社区儿童接送服务车辆的线路优化[J].西南交通大学学报,2006,41(4):486-490. 被引量:8
  • 2韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 3延丽平,曾建潮.具有自适应随机惯性权重的PSO算法[J].计算机工程与设计,2006,27(24):4677-4679. 被引量:13
  • 4胡建秀,曾建潮.微粒群算法中惯性权重的调整策略[J].计算机工程,2007,33(11):193-195. 被引量:62
  • 5Kennedy J, Eberhart R C.Particle swarm optimization[C]//Proceeding IEEE International Conference on Neural Networks. Perth:IEEE Press, 1995: 1942-1948.
  • 6Shi Y, Eberhart R.A modified Particle Swarm Optimizer[J]. IEEE International Conference on Evolutionary Computation. Washington : IEEE, 1998 : 69-73.
  • 7Deb K,Pratap A,Agrawal S,et al.A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2) : 182-197.
  • 8Zitzler E,Deb K,Thiele L.Comparison of multiobjective evolutionary algorithms:Empirical results[J].IEEE Trans on Evolutionary Computation,2002,8(2) : 173-195.
  • 9Deb K,Thiele L,Laumanns M,et al.Scalable multi-objective optimization test problems[C]//Congress on Evolutionary Computation (CEC' 2002).Volume 1, Piscataway, New Jersey, IEEE Service Center, 2002: 825-830.
  • 10Sierra M R, Coello C A.lmproving PSO-based multi-objective optimization using crowding,mutation and ε-dominance[C]//Proc of the 3rd Int'l Conf on Evolutionary Multi-criterion Optimization, Mexico, 2005 : 505-519.

共引文献362

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部