期刊文献+

Estimation of Stochastic Volatility with a Compensated Poisson Jump Using Quadratic Variation

Estimation of Stochastic Volatility with a Compensated Poisson Jump Using Quadratic Variation
下载PDF
导出
摘要 The degree of variation of trading prices with respect to time is volatility-measured by the standard deviation of returns. We present the estimation of stochastic volatility from the stochastic differential equation for evenly spaced data. We indicate that, the price process is driven by a semi-martingale and the data are evenly spaced. The results of Malliavin and Mancino [1] are extended by adding a compensated poisson jump that uses a quadratic variation to calculate volatility. The volatility is computed from a daily data without assuming its functional form. Our result is well suited for financial market applications and in particular the analysis of high frequency data for the computation of volatility. The degree of variation of trading prices with respect to time is volatility-measured by the standard deviation of returns. We present the estimation of stochastic volatility from the stochastic differential equation for evenly spaced data. We indicate that, the price process is driven by a semi-martingale and the data are evenly spaced. The results of Malliavin and Mancino [1] are extended by adding a compensated poisson jump that uses a quadratic variation to calculate volatility. The volatility is computed from a daily data without assuming its functional form. Our result is well suited for financial market applications and in particular the analysis of high frequency data for the computation of volatility.
出处 《Applied Mathematics》 2017年第7期987-1000,共14页 应用数学(英文)
关键词 STOCHASTIC VOLATILITY Compensated POISSON JUMP QUADRATIC VARIATION Stochastic Volatility Compensated Poisson Jump Quadratic Variation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部