摘要
We consider the problem of estimating a function g in nonparametric regression model when only some of covariates are measured with errors with the assistance of validation data. Without specifying any error model structure between the surrogate and true covariables, we propose an estimator which integrates orthogonal series estimation and truncated series approximation method. Under general regularity conditions, we get the convergence rate of this estimator. Simulations demonstrate the finite-sample properties of the new estimator.
We consider the problem of estimating a function g in nonparametric regression model when only some of covariates are measured with errors with the assistance of validation data. Without specifying any error model structure between the surrogate and true covariables, we propose an estimator which integrates orthogonal series estimation and truncated series approximation method. Under general regularity conditions, we get the convergence rate of this estimator. Simulations demonstrate the finite-sample properties of the new estimator.