期刊文献+

Dynamics of a New Rumor Propagation Model with the Spread of Truth 被引量:4

Dynamics of a New Rumor Propagation Model with the Spread of Truth
下载PDF
导出
摘要 A mathematical model described the propagation of information including rumor and truth presented and its properties investigated. We explored exists of the equilibria, local stability and global asymptotical stability, and obtained the propagation threshold of rumor spreading. Numerical simulation is shown to demonstrate our results. Uncertainty and sensitivity analysis shows the importance of the parameters in our model. A mathematical model described the propagation of information including rumor and truth presented and its properties investigated. We explored exists of the equilibria, local stability and global asymptotical stability, and obtained the propagation threshold of rumor spreading. Numerical simulation is shown to demonstrate our results. Uncertainty and sensitivity analysis shows the importance of the parameters in our model.
出处 《Applied Mathematics》 2018年第5期536-549,共14页 应用数学(英文)
关键词 RUMOR PROPAGATION Counter-Rumor Sensitivity Analysis Local BISTABLE Global Stability Rumor Propagation Counter-Rumor Sensitivity Analysis Local Bistable Global Stability
  • 相关文献

参考文献2

二级参考文献12

  • 1陈萍.浅析突发公共卫生事件中的社会焦虑心理——以SARS为例[J].医学与社会,2005,18(11):39-41. 被引量:24
  • 2[1]Kermark M D. Mokendrick A G. Contributions to the mathematical theory of epidemics[J]. Part I, Proc Roy Soc, A, 1927, 115(5):700-721.
  • 3[2]Cooke K L. Stability analysis for a vector disease model[J]. Rocky Mount J Math, 1979, 9(1):31-42.
  • 4[3]Hethcote H W. Qualititative analyses of communicable disease models[J]. Math Biosci, 1976, 28(3):335-356.
  • 5[4]Capasso V. Mathematical structures of epidemic systems[J]. Lecture notes in biomath[M]. 97 Springer-verlag,1993.
  • 6[5]Hethcote H W, Liu W M, Leven S A. Dynamical behavior of epidemiological models with nonlinear incidence rates[J]. Math Biosci, 1987, 25(3):359-380.
  • 7[6]Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Math Biosci, 1978, 42(1):41-61.
  • 8[7]Bailey N T J. The Mathematical Theorey of Infectious Diseases.[M]. London: Griffin, 1975.
  • 9余雪梅,乐虹,郝敏,李诗杨,于娜.国内外突发公共卫生事件应急管理体系比较研究[J].医学与社会,2007,20(7):34-35. 被引量:29
  • 10吴宜蓁.危机传播[M].苏州:苏州大学出版社,2005.

共引文献53

同被引文献21

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部