期刊文献+

Binomial Hadamard Series and Inequalities over the Spectra of a Strongly Regular Graph

Binomial Hadamard Series and Inequalities over the Spectra of a Strongly Regular Graph
下载PDF
导出
摘要 Let G be a primitive strongly regular graph of order n and A is adjacency matrix. In this paper we first associate to A a real 3-dimensional Euclidean Jordan algebra? with rank three spanned by In and the natural powers of A that is a subalgebra of the Euclidean Jordan algebra of symmetric matrix of order n. Next we consider a basis? that is a Jordan frame of . Finally, by an algebraic asymptotic analysis of the second spectral decomposition of some Hadamard series associated to A we establish some inequalities over the spectra and over the parameters of a strongly regular graph. Let G be a primitive strongly regular graph of order n and A is adjacency matrix. In this paper we first associate to A a real 3-dimensional Euclidean Jordan algebra? with rank three spanned by In and the natural powers of A that is a subalgebra of the Euclidean Jordan algebra of symmetric matrix of order n. Next we consider a basis? that is a Jordan frame of . Finally, by an algebraic asymptotic analysis of the second spectral decomposition of some Hadamard series associated to A we establish some inequalities over the spectra and over the parameters of a strongly regular graph.
作者 Luís Vieira
出处 《Applied Mathematics》 2018年第9期1055-1071,共17页 应用数学(英文)
关键词 Euclidean JORDAN ALGEBRAS Graph Theory STRONGLY Regular Graphs Euclidean Jordan Algebras Graph Theory Strongly Regular Graphs
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部