期刊文献+

Proof of Ito’s Formula for Ito’s Process in Nonstandard Analysis

Proof of Ito’s Formula for Ito’s Process in Nonstandard Analysis
下载PDF
导出
摘要 In our previous paper [1], we proposed a non-standardization of the concept of convolution in order to construct an extended Wiener measure using nonstandard analysis by E. Nelson [2]. In this paper, we consider Ito’s integral with respect to the extended Wiener measure and extend Ito’s formula for Ito’s process. Because of doing the extension of Ito’s formula, we could treat stochastic differential equations in the sense of nonstandard analysis. In this framework, we need the nonstandardization of convolution again. It was not yet proved in the last paper, therefore we shall provide the proof. In our previous paper [1], we proposed a non-standardization of the concept of convolution in order to construct an extended Wiener measure using nonstandard analysis by E. Nelson [2]. In this paper, we consider Ito’s integral with respect to the extended Wiener measure and extend Ito’s formula for Ito’s process. Because of doing the extension of Ito’s formula, we could treat stochastic differential equations in the sense of nonstandard analysis. In this framework, we need the nonstandardization of convolution again. It was not yet proved in the last paper, therefore we shall provide the proof.
出处 《Applied Mathematics》 2019年第7期561-567,共7页 应用数学(英文)
关键词 Ito’s Process STOCHASTIC DIFFERENTIAL Equation S-Continuity NONSTANDARD Analysis Ito’s Process Stochastic Differential Equation S-Continuity Nonstandard Analysis
  • 相关文献

参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部