期刊文献+

On the Defining Equations of Protein’s Shape from a Category Theoretical Point of View

On the Defining Equations of Protein’s Shape from a Category Theoretical Point of View
下载PDF
导出
摘要 This paper proposes a novel category theoretic approach to describe protein’s shape, <i>i.e.</i>, a description of their shape by a set of algebraic equations. The focus of the approach is on the relations between proteins, rather than on the proteins themselves. Knowledge of category theory is not required as mathematical notions are defined concretely. In this paper, proteins are represented as closed trajectories (<i>i.e.</i>, loops) of flows of triangles. The relations between proteins are defined using the fusion and fission of loops of triangles, where allostery occurs naturally. The shape of a protein is then described with quantities that are measurable with unity elements called “unit loops”. That is, protein’s shape is described with the loops that are obtained by the fusion of unit loops. Measurable loops are called “integral”. In the approach, the unit loops play a role similar to the role “1” plays in the set Z of integers. In particular, the author considers two categories of loops, the “integral” loops and the “rational” loops. Rational loops are then defined using algebraic equations with “integral loop” coefficients. Because of the approach, our theory has some similarities to quantum mechanics, where only observable quantities are admitted in physical theory. The author believes that this paper not only provides a new perspective on protein engineering, but also promotes further collaboration between biology and other disciplines. This paper proposes a novel category theoretic approach to describe protein’s shape, <i>i.e.</i>, a description of their shape by a set of algebraic equations. The focus of the approach is on the relations between proteins, rather than on the proteins themselves. Knowledge of category theory is not required as mathematical notions are defined concretely. In this paper, proteins are represented as closed trajectories (<i>i.e.</i>, loops) of flows of triangles. The relations between proteins are defined using the fusion and fission of loops of triangles, where allostery occurs naturally. The shape of a protein is then described with quantities that are measurable with unity elements called “unit loops”. That is, protein’s shape is described with the loops that are obtained by the fusion of unit loops. Measurable loops are called “integral”. In the approach, the unit loops play a role similar to the role “1” plays in the set Z of integers. In particular, the author considers two categories of loops, the “integral” loops and the “rational” loops. Rational loops are then defined using algebraic equations with “integral loop” coefficients. Because of the approach, our theory has some similarities to quantum mechanics, where only observable quantities are admitted in physical theory. The author believes that this paper not only provides a new perspective on protein engineering, but also promotes further collaboration between biology and other disciplines.
作者 Naoto Morikawa Naoto Morikawa(Genocript, Zama, Japan)
机构地区 Genocript
出处 《Applied Mathematics》 2020年第9期890-916,共27页 应用数学(英文)
关键词 Differential Geometry Discrete Mathematics Protein Design Triangular Flow Algebra of Loops Differential Geometry Discrete Mathematics Protein Design Triangular Flow Algebra of Loops
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部