期刊文献+

Finite Volume Element Method for Solving the Elliptic Neumann Boundary Control Problems

Finite Volume Element Method for Solving the Elliptic Neumann Boundary Control Problems
下载PDF
导出
摘要 Solving optimization problems with partial differential equations constraints is one of the most challenging problems in the context of industrial applications. In this paper, we study the finite volume element method for solving the elliptic Neumann boundary control problems. The variational discretization approach is used to deal with the control. Numerical results demonstrate that the proposed method for control is second-order accuracy in the <em>L</em><sup>2</sup> (Γ) and <em>L</em><sup>∞</sup> (Γ) norm. For state and adjoint state, optimal convergence order in the <em>L</em><sup>2</sup> (Ω) and <em>H</em><sup>1</sup> (Ω) can also be obtained. Solving optimization problems with partial differential equations constraints is one of the most challenging problems in the context of industrial applications. In this paper, we study the finite volume element method for solving the elliptic Neumann boundary control problems. The variational discretization approach is used to deal with the control. Numerical results demonstrate that the proposed method for control is second-order accuracy in the <em>L</em><sup>2</sup> (Γ) and <em>L</em><sup>∞</sup> (Γ) norm. For state and adjoint state, optimal convergence order in the <em>L</em><sup>2</sup> (Ω) and <em>H</em><sup>1</sup> (Ω) can also be obtained.
作者 Quanxiang Wang Quanxiang Wang(College of Science, Nanjing Agricultural University, Nanjing, China)
机构地区 College of Science
出处 《Applied Mathematics》 2020年第12期1243-1252,共10页 应用数学(英文)
关键词 Finite Volume Element Neumann Boundary Control Variational Discretization Finite Volume Element Neumann Boundary Control Variational Discretization
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部